719. The Conductance of Solutions in which the Solvent Molecule is "Large." Part IV.¹ Amine Picrates in Triethyl Phosphate.

By C. M. FRENCH, P. B. HART, and D. F. MUGGLETON.

The conductances in triethyl phosphate at 40° of three quaternary ammonium picrates and two amine picrates have been measured in the concentration range 4.59×10^{-6} to $6\cdot10 \times 10^{-4}$ N. One of the systems was studied also at 25° and 55° . All solutes behaved as moderately strong electrolytes. The ratios to each other of the limiting equivalent conductances of the three quaternary ammonium picrates were fairly close to the values in solvents having smaller molecules, *e.g.*, acetonitrile. Walden products were unexpectedly high, and anomalies were encountered in the ion-pair dissociation constants. Ionic rather than molecular dissociation was observed for the two amine picrates.

TRITOLYL and trioctyl phosphates have already been used to study the electrical conductance of non-aqueous systems where the solvent molecules are larger than those of common solvents, and the work has now been extended to solutions in triethyl phosphate. This solvent has much smaller molecules than the phosphoric esters employed earlier ¹ so that the effect of chemical nature and structure, as opposed to mere molecular size, might become dominant factors. Conductance relationships in this solvent might therefore be expected to approximate to those of solutions in solvents of conventional size.

EXPERIMENTAL

Solutes were purified and conductances measured as described earlier.¹

Triethyl phosphate was dried (Na_2SO_4) , and distilled under reduced pressure. The middle fraction ($\sim 80\%$) was stored for several weeks over anhydrous sodium sulphate, again fractionated, and repeatedly distilled under reduced pressure until the specific conductance reached a constant

¹ Part III, French and Muggleton, J., 1957, 5064.

low value [b. p. 216°/760 mm. (lit.,² 216°/760 mm.), 70·5°/4 mm. (lit.,³ 75·5°/5 mm.); $n_{\rm p}^{20}$ 1·40527 (lit.,² $n_{\rm p}^{20}$ 1·4053); d_4^{25} 1·06826 (lit.,² 1·0686), d_4^{40} 1·05332 (lit.,² 1·0532), d_4^{55} 1·03841 (lit.,² 1.0378); viscosity η^{25} 2.147, η^{40} 1.684, η^{55} 1.376 cP; dielectric constant ϵ^{15} 13.43, ϵ^{25} 12.94, ϵ^{45} 11.91, ϵ^{65} 10.93; specific conductance $\times 10^8$, κ^{25} 1.19, κ^{40} 1.68, κ^{55} 2.89 ohm⁻¹ cm.⁻¹].

Difficulties were encountered in measuring the dielectric constant of triethyl phosphate because the ester appears to have a high dielectric loss. The Schering bridge previously used failed because the capacitance to be measured (C_p) will be equal to $-\Delta C_1$, the change in capacitance of the variable condenser C_1 (in parallel with the test cell) which is required to restore balance when the test cell is introduced into the circuit, only if $R_p \gg R_4$, where R_p is the resistance of the test cell, and R_4 the resistance in parallel with a small variable capacitance C_4 , itself in series with C_1 . When the conductance of the liquid in the test cell is high, $-\Delta C_1 < 0$ C_{p} , and the measured dielectric constant will be too small. A precise estimate cannot be given of the conductance of the liquid above which the method fails, but experience suggests that a specific conductance of 5×10^{-10} ohm⁻¹ cm.⁻¹ is probably near the limit. Extrapolation of measurements made by a high-frequency technique also gave unacceptable results.

The dielectric constant of triethyl phosphate was finally measured by a resonance method, in an apparatus built by Mr. Fairbourne of this Department according to his modification of

Table	1.	Equivalent conductance in triethyl phosphate.
		E ND' - 1 959

				Et ₄ NPic	c at 25°				
$10^{4}c$	Λ	10 ⁴ c	Λ	10 ⁴ c	Λ	$10^{4}c$	Λ	10 ⁴ c	Λ
61.032	20.591	$17 \cdot 132$	$25 \cdot 361$	6.3999	28.672	1.7836	33.732	0.27158	36.071
36.696	$22 \cdot 426$	$12 \cdot 216$	26.565	3.8992	30.488	1.5161	$33 \cdot 187$	0.050588	37.549
$22 \cdot 451$	$24 \cdot 323$	7.8264	28.063	2.9085	$31 \cdot 390$	0.81695	$34 \cdot 448$		
				Et,NPic	: at 40°				
46.423	27.010	18.197	31.146	6.0198	36.551	1.7897	40.823	0.82821	43.162
40.939	27.426	12.372	33.193	5.2246	37.004	1.4314	41.504	0.33193	45.333
27.650	29.471	8.8596	34.750	3.5424	38.711	0.96780	42.927	0.17942	46.861
			01.000					0.11885	47.394
				Et₄NPic	: at 55°				
39.531	32.947	9.4458	41.503	2.4734	$48 \cdot 800$	0.81734	53.052	0.15565	56.112
21.525	36.239	5.7580	$44 \cdot 427$	1.5478	50.648	0.64240	53.468	0.045871	57.668
17.798	37.554	4.5970	45.876						
				Bu₄NPic	c at 40°				
34.448	24.657	18.219	27.704	$7 \cdot 1039$	31.618	2.6077	$35 \cdot 526$	0.55098	39.569
31.359	$25 \cdot 163$	11.467	29.643	3.7666	34.385	2.0081	36.540	0.51470	39.446
28.147	25.535	7.1945	31.837	2.6515	35.635	1.0270	38.173	0.31270	40.121
				(C.H.,).NI	Pic at 40°				
34.620	23.667	15.179	97.384	7.5455	30.361	9.5069	34.506	0.25495	28.895
26.041	20 007	11.336	21.004	5.2000	31.899	1.8803	35.961	0.97157	20.950
22.779	25.598	9.8013	29.285	4.9109	32.278	0.92391	37.352	0.27107	33 200
			(1	Ph•CH ₂) ₃ NI	HPic at 40)°			
31.038	22.074	7.2938	$27 \cdot 193$	1.1827	36.465	0.78434	39.180	0.19501	$42 \cdot 425$
16.763	23.701	5.0410	28.579	0.80032	39.154	0.44933	40.591	0.12341	42.644
11.425	25.376	2.9751	31.092						
				Ph∙NH₃l	Pi at 40°				
56.928	17.974	15.116	$22 \cdot 804$	7.0898	27.061	1.9315	$34 \cdot 306$	0.66991	38.352
$34 \cdot 807$	19.163	12.172	$23 \cdot 870$	4.4991	29.790	1.2969	36.114	0.31233	40.358
$25 \cdot 932$	20.340	8.9941	25.508	3.1022	$31 \cdot 897$	0.98275	$37 \cdot 209$	0.06540	42.723
19.195	21.747								

Le Fèvre and Calderbank's circuit.⁴ A test cell as described by Smith ⁵ was used, the leads to it being unscreened and kept as short as possible. Ethylene dichloride, purified by refluxing over activated alumina and fractionation, was used for calibration, its dielectric constant at 25° being taken as $10.25.^{6}$ It was not practicable to measure the dielectric constant at the three

² Sugden, Read, and Wilkins, J., 1925, **127**, 1525.
 ³ Vogel and Cowan, J., 1943, 16.

Le Fèvre and Calderbank, J., 1948, 1951.
 Smith, "Dipole Moments," Butterworths, London, 1956.
 Fuoss and Kraus, J. Amer. Chem. Soc., 1933, 55, 3614.

6д

temperatures used in the conductance experiments, but a plot of dielectric constant against temperature was linear, so that values at 40° and 55° were interpolated (ϵ^{40} 12·18, ϵ^{55} 11·43).

Results.—The equivalent conductance in triethyl phosphate of the five picrates at various concentrations is shown in Table 1.

DISCUSSION

The specific conductance of solutions in triethyl phosphate varied almost linearly with concentration. This resembled the behaviour of solutions of the same salts in acetonitrile ⁷ but was unlike that of solutions in the phosphoric esters with larger molecules.¹ As in the case of solutions in tritolyl phosphate, however, the variation in equivalent conductance with concentration was small for all electrolytes. The $\Lambda - c^{\frac{1}{2}}$ plots were again shallow curves typical of moderately strong electrolytes, and could be extrapolated to give approximate values of Λ_0 from which the final values of Λ_0 shown in Table 2 were obtained by Shedlovsky's extrapolation method.⁸ Consideration was also given to the modified derivation of constants from conductance data suggested recently by Fuoss,⁹ but in view of the low ion-pair dissociation constants ($\ll 10^{-3}$) of all solutes in triethyl phosphate, and the fact that the size of the ionic species was comparable with that of the solvent, his treatment was not employed. As expected, no minima were observed in the $\Lambda - c^{\frac{1}{2}}$ plots since Walden's empirical rule $\epsilon^3/c_{\min} = 3 \times 10^4$, indicated that these should occur at concentrations in excess of 10^{-2} N, and hence outside the present range.

The ratios of Λ_0 for the three tetra-alkylammonium picrates resemble those in acetonitrile 7 and other solvents with small molecules $[Et_4NPic: Bu^n_4NPic: (n-C_5H_{11})_4NPic$ 1:0.878:0.860], but differ markedly from the corresponding values in the other phosphoric esters. For the tetra-alkylammonium picrates in triethyl phosphate Λ_0 values differ considerably from those in tritolyl and trioctyl phosphates, and are of the order of 100 times larger, approximating more closely to values in conventional solvents. The Walden products (Table 2) are very high compared with the average values in a large number of other common solvents of conventional size, where Λ_{07} at 25° is 0.560 for Et₄NPic and is somewhat lower for the larger solutes. However, as with solutions in dialkyl phthalates ¹⁰ where the solvent molecules are comparatively large, the Walden product decreases with increasing size of quaternary ammonium ions, whilst $\Lambda_0 \eta$ for a given salt appears to decrease with increasing solvent size. It has been suggested ¹⁰ that a " normal " Walden product may be due to uniform solvation, so that the high Walden products found in the triethyl phosphate systems indicate very limited solvation. This suggests that, as with dimethyl phthalate, the solvent molecules may be oriented with their dipoles close together and shielded from interaction with the solute ions. The large hydrocarbon residues in trioctyl and tritolyl phosphates might, however, diminish loose dipolar association of solvent molecules and hence favour increased ion solvation, thus producing the observed lowering of the Walden product. Limited solvation of the tetra-alkylammonium ions in triethyl phosphate is consistent with the fact that temperature has little effect on the Walden product, which suggests that increased ion mobility is associated simply with decreased viscosity of the solvent.

Ion-pair radii, the Bjerrum "a" parameter, calculated from the equation where K is the ion-pair dissociation constant (see Table 2):

$$\frac{1}{K} = \frac{4\pi N}{1000} \left[\frac{e^2 |z_1 z_2|}{\epsilon kT} \right]^3. Q(b)$$

are given in Table 3 together with the corresponding values in the other phosphoric esters ¹ and in acetonitrile.⁷ The magnitude of "a" for tetraethylammonium picrate in triethyl phosphate, the smallest of the phosphoric esters, approximates closely to that in the small

- ⁷ French and Muggleton, J., 1957, 2131.
- ⁸ Shedlovsky, J. Franklin Inst., 1938, 225, 739.
 ⁹ Fuoss, J. Amer. Chem. Soc., 1957, 79, 3301.
- ¹⁰ French and Singer, J., 1956, 1424, 2428.

solvent acetonitrile at the only temperature available for comparison, but differs markedly from that in the other two phosphates. Thus, if this parameter is taken as indicating the size of an ion, the variation in value seems to indicate that the tetraethylammonium ion is solvated in each of the solvents, and perhaps also that there are differences in degree of solvation, and/or to reflect the size of the solvating molecules. Nevertheless, the change

TABLE 2.

	25°	${ m Et_4NPic} 40^\circ$	55°	${f Bu_4NPic} 40^\circ$	$\underset{40^{\circ}}{(\mathrm{C_5H_{11}})_4\mathrm{NPic}}$	(Ph•CH ₂) ₃ NHPic 40°	Ph•NH ₃ Pic 40°
$\Lambda_0 \dots \dots$	37.3	47.45	57.6	41.7	40.8	44.25	43 .5
$\Lambda_0 \eta \ \ 10^4 K \$	$\begin{array}{c} 0.801 \\ 11.55 \end{array}$	$0.799 \\ 10.97$	$0.793 \\ 10.16$	$0.702 \\ 12.59$	$0.687 \\ 10.81$	$\begin{array}{c} 0.745\\ 5.30\end{array}$	$0.732 \\ 4.19$

TABLE 3. Ion-pair size (Å).

	Solute						
Solvent	25°	${ m Et_4NPic} 40^\circ$	55°	${f Bu_4NPic}\ 40^\circ$	$(C_{5}H_{11})_{4}NPic$ 40°		
Triethyl phosphate	6.12	7.00	7.92	7.90	6.78		
Trioctyl phosphate	9.10	8.41	7.86	10.60	10.64		
Tritolyl phosphate	9.59	11.50	16.00	36.04	38.09		
Acetonitrile	6.00						

in "a" with temperature indicates that other factors must also be involved. The interaction energy between a large ion and the solvent will be small so that a slight increase in temperature should produce a significant decrease in solvation. However, "a" increases with temperature in both triethyl and tritolyl phosphate although the expected decrease is observed in trioctyl phosphate. Finally the ion-pair radius in triethyl phosphate increases slightly on passing from tetraethyl- to tetrabutyl-ammonium picrate and then decreases although this does not occur in the other two solvents. This again suggests a very small degree of solvation of quaternary ammonium ions in triethyl phosphate, the observed difference of 0.92 Å in "a" between the tetraethyl- and tetrabutyl-ammonium picrates possibly representing the difference in sizes of the actual quaternary ammonium ions (the difference calculated by Robinson and Stokes ¹¹ from models is 0.94 Å), the smaller value of the third salt corresponding to a decrease in solvation. These arguments do not exclude the possibility that the picrate ion also is solvated in these solvents, and some of the phenomena just discussed may be due in part, at least, to this cause. Nevertheless, since the picrate ion is common to all solutes here used, solvation of this ion cannot account for all the variations in "a" noted.

These data may also be considered in terms of the ion-pair dissociation constants, and these, for all three quaternary ammonium salts in triethyl phosphate, are similar to those in tritolyl phosphate, but differ considerably from those in trioctyl phosphate. The low dissociation constant of tetrapentylammonium picrate compared with that of the preceding homologue may clearly be associated with the decreased solvation of the cation discussed above, and the consequent possibility of closer approach of the two ions of the The increase in K between tetraethyl- and tetrabutyl-ammonium picrate ion pair. parallels qualitatively the effects in the other two phosphoric esters,¹ although the ratio of K for the two salts in triethyl phosphate approaches much more nearly the value in conventional solvents. Finally, contrary to Kraus's suggestion, 12 K and ε decrease with increasing temperature for solutions in both triethyl and trioctyl phosphates.

It is noteworthy that, in triethyl phosphate, Λ_0 for both tribenzylammonium and anilinium picrates is similar to the values for the quaternary ammonium picrates. It seems therefore, that the acid-base (*i.e.*, molecular) dissociation which has been postulated to account for the conductimetric behaviour of these two amine picrates in most other solvents

¹¹ Robinson and Stokes, "Electrolyte Solutions," Butterworths, London, 1955.
¹² Kraus, J. Phys. Chem., 1956, **60**, 129.

Buchanan and Lockhart:

is negligible in triethyl phosphate. Tribenzylammonium picrate in acetonitrile⁷ is also an exception, and Marryott,¹³ by dielectric measurements, failed to find evidence of acidbase dissociation of this electrolyte in benzene. It appears also that the mobility of the tribenzylammonium ion, with 24 carbon atoms, is greater than that of the tetrapentylammonium ion with only 22 carbon atoms, Λ_0 for the two picrates being 44·2 and 40·8 respectively. However, the Shedlovsky plots for tribenzylammonium picrate were somewhat less reliable than in the other cases, deviations from linearity occurring at a considerably lower concentration.

The authors thank the University of London Central Research Fund Committee, the Royal Society, and the Chemical Society for grants, and Dr. R. F. Hudson for the loan of dielectric constant apparatus. One of us (D. F. M.) thanks the Department of Scientific and Industrial Research for a maintenance grant, and one (P. B. H.) the Governors of this College and the Ministry of Education for a supplemented Research Studentship.

Queen Mary College, Mile End Road, London, E.1.

[Received, April 10th, 1959.]

¹³ Marryott, J. Res. Nat. Bur. Stand., 1948, 41, No. 1, 7.

3586